
PATH FROM SOFTWARE COLLECTIONS 
TO CONTAINERS FOR OPENSHIFT

Honza Horak <hhorak@redhat.com>
CentOS Dojo, Brussels, 29th Jan 2016 



Containers based on Software Collections

The goal

● Input: Software Collection packages
● Output: One set of container images
● Requirements:

○ usable on bare metal
○ designed for PaaS (OpenShift)



Containers based on Software Collections

What this talk includes

1. Building the first container
2. PostgreSQL container
3. Python container to build applications
4. Software Collections in containers
5. Application Containers in Red Hat and CentOS Portfolio
6. Distribution of container apps



Containers based on Software Collections

1. CONTAINERS BASICS





Tip #0:
Content matters.



Containers based on Software Collections

Applications as micro services

Infrastructure

Host OS (kernel)

Docker Engine

Bin/Libs Bin/Libs Bin/Libs

App App App

Linux Containers (e.g. Docker)

Infrastructure

Host OS (kernel)

Hypervisor

Bin/Libs Bin/Libs Bin/Libs

App App App

Guest OS Guest OS Guest OS

Traditional Virtual Machine



Containers based on Software Collections

Container is not a virtual machine

Infrastructure

Host OS (kernel)

Docker Engine

Bin/Libs Bin/Libs Bin/Libs

App App App

Linux Containers (e.g. Docker)

Infrastructure

Host OS (kernel)

Hypervisor

Bin/Libs Bin/Libs Bin/Libs

App App App

Guest OS Guest OS Guest OS

Traditional Virtual Machine



Tip #1:
Use only content you trust.



Containers based on Software Collections

#> yum install -y docker
#> systemctl start docker
#> docker pull centos:7

#> docker run -ti --name mycont centos:7 bash
[root@a1eefecdacfa /]# echo Hello Dojo > /root/greeting
[root@a1eefecdacfa /]# exit

#> docker commit mycont
0bdcfc5ba0602197e2ac4609b8101dc8eaa0d8ab114f542ab6b2f15220d0ab22

Building the first container

10



Tip #2:
Use reproducible builds.



Containers based on Software Collections

#> cat Dockerfile
FROM centos:centos7
RUN echo Hello Dojo > /root/greeting

#> docker build .

Building the first container correctly

12



Containers based on Software Collections

2. CREATING POSTGRESQL 
CONTAINER



Containers based on Software Collections

#> cat Dockerfile
FROM centos:centos7
RUN yum -y install postgresql-server

#> docker build .

Installing RPMs in container

14



Containers based on Software Collections

#> docker build .
Sending build context to Docker daemon 2.048 kB
Step 1 : FROM centos:centos7
Trying to pull repository docker.io/library/centos ... centos7: Pulling from 
library/centos
Digest: sha256:0b0e2e8ff4ce5bb714fc30356f2a7f6ae29a1b84adef9f5cd22b388ffccb65d7
Status: Downloaded newer image for docker.io/centos:centos7

 ---> c8a648134623
Step 2 : RUN yum -y install postgresql-server
 ---> Running in 8b53d7337b55
<skipping yum output>
Complete!
 ---> 29036308c1ec
Removing intermediate container 8b53d7337b55
Successfully built 29036308c1ec

Installing RPMs in container

15



Tip #3:
Make small containers.



Containers based on Software Collections

#> cat Dockerfile
FROM centos:centos7
RUN yum -y --setopt=tsflags=nodocs install postgresql-server && \
    yum clean all

#> docker build .

Installing RPMs in container

17



Containers based on Software Collections

#> docker build .
Sending build context to Docker daemon 2.048 kB
Step 1 : FROM centos:centos7
 ---> c8a648134623
Step 2 : RUN yum -y --setopt=tsflags=nodocs install postgresql-server 
&& yum clean all
 ---> Using cache
 ---> 29036308c1ec
Successfully built 29036308c1ec

Installing RPMs in container

18



Tip #4:
Be careful about docker cache.



Containers based on Software Collections

#> cat Dockerfile
FROM centos:centos7
RUN yum -y --setopt=tsflags=nodocs install postgresql-server && \
    yum clean all

#> docker build --no-cache=true .

Installing RPMs in container

20



Are we there yet?



Containers based on Software Collections

#> cat Dockerfile

FROM centos:centos7

RUN yum -y --setopt=tsflags=nodocs install postgresql-server && \
    yum clean all

ENV HOME=/var/lib/pgsql
ENV PGDATA=/var/lib/pgsql/data
ENV PGUSER=postgres
USER 26

ADD run-postgresql /usr/bin/
CMD [ "/usr/bin/run-postgresql" ]

Make container do something

22



Tip #5:
Use non-root user wherever possible.



Containers based on Software Collections

#> cat run-postgresql

#!/bin/bash

initdb

echo "host all all 0.0.0.0/0 md5" >${PGDATA}/pg_hba.conf
echo "listen_addresses = '*'" >${PGDATA}/postgresql.conf

exec postgres "$@"

Make container do something

24



Tip #6:
Use exec for final process.



Containers based on Software Collections

#> docker build -t postgresql .

#> docker run -ti postgresql

Running PostgreSQL container

26



Containers based on Software Collections

#> docker run -ti -p 5432:5432 --name p1 postgresql

#> docker inspect --format='{{.NetworkSettings.IPAddress}}' p1
172.17.0.2

#> psql -h 172.17.0.2
Password: _

Connecting to PostgreSQL container

27



Containers based on Software Collections

#> docker run -ti -p 5432:5432 --name p1 postgresql

#> docker inspect --format='{{.NetworkSettings.IPAddress}}' p1
172.17.0.2

#> psql -h 172.17.0.2
Password: _

Connecting to PostgreSQL container

28



Tip #7:
Do not use default passwords.



Containers based on Software Collections

#> cat run-postgresql

...
echo "host all all 0.0.0.0/0 md5" >${PGDATA}/pg_hba.conf
echo "local all postgres peer" >>${PGDATA}/pg_hba.conf
echo "listen_addresses = '*'" >${PGDATA}/postgresql.conf

pg_ctl -w start -o "-h ''"
psql --command "ALTER USER \"postgres\" WITH ENCRYPTED PASSWORD 
'${POSTGRESQL_ADMIN_PASSWORD}';"
pg_ctl stop
...

Connecting to PostgreSQL container

30



Containers based on Software Collections

#> docker run -ti -d -p 5432:5432 --name p1 \
              -e POSTGRESQL_ADMIN_PASSWORD=pass postgresql
b1e23c844346d2788d7b7891d8f78244788f71b19dcf291b05cdf1d7685ef556

#> psql -h 172.17.0.2 -U postgres
Password for user postgres:
psql (9.2.14, server 9.2.14)
Type "help" for help.

postgres=# _

Connecting to PostgreSQL container

31



How to configure such a database?



Containers based on Software Collections

#> cat run-postgresql
...
echo "max_connections = ${POSTGRESQL_MAX_CONNECTIONS}" >>${PGDATA}
/postgresql.conf
...

Configuring PostgreSQL container

33



Tip #8:
Support only most common 

configuration options.



Tip #9:
Use expected paths

-v /db:/var/lib/pgsql/data:Z



Containers based on Software Collections

Example of PostgreSQL 9.4 container

#> docker run -d \
          -p 5432:5432 \
          -e POSTGRESQL_ADMIN_PASSWORD=secret \
          -e POSTGRESQL_MAX_CONNECTIONS=10 \
          -e POSTGRESQL_USER=guestbook \
          -e POSTGRESQL_PASSWORD=pass \
          -e POSTGRESQL_DATABASE=guestbook \
          -v /db:/var/lib/pgsql/data:Z \
          postgresql-94-centos7

36



Containers based on Software Collections

3. PYTHON CONTAINER TO BUILD 
APPLICATIONS



Containers based on Software Collections

Simplest Python container
Spotted an issue?

#> cat Dockerfile

FROM centos:7

RUN yum install -y --setopt=tsflags=nodocs python python-setuptools 
python-pip

38



Containers based on Software Collections

Simplest Python container
Spotted an issue?

#> cat Dockerfile

FROM centos:7

RUN yum install -y --setopt=tsflags=nodocs python python-setuptools 
python-pip && yum clean all

39



Containers based on Software Collections

Building simplest Python container

#> docker build -t python-27-centos7 .
Sending build context to Docker daemon 2.048 kB
Step 1 : FROM centos:7
 ---> c8a648134623
Step 2 : RUN yum install -y --setopt=tsflags=nodocs python python-setuptools 
python-pip
 ---> Running in 067726695f58
…
Package python-2.7.5-34.el7.x86_64 already installed and latest version
No package python-pip available.
Resolving Dependencies
--> Running transaction check
… 
Complete!
 ---> 45af014765cf
Removing intermediate container 067726695f58
Successfully built 45af014765cf

40



Tip #10:
Do not believe yum.



How to build application on top of it?



Containers based on Software Collections

Building app container

#> cat Dockerfile
FROM python-27-centos7
ADD install-app /usr/bin/
RUN /usr/bin/install-app
CMD ["/usr/bin/python", "/opt/app-root/guestbook-pgsql/guestbook/bin.py"]

#> cat install-app
#!/bin/bash
cd /opt/app-root
git clone https://github.com/hhorak/guestbook-pgsql.git
cd guestbook-pgsql/guestbook
./setup.py

#> docker build -t guestbook .

43



Tip #11:
Help users to be more effective.



Containers based on Software Collections

Building app container using s2i

#> yum -y install source-to-image

#> s2i build /path/to/guestbook python-27-centos7 guestbook

45



Source-to-image (s2i) is a tool for building 
reproducible Docker images.

s2i produces ready-to-run images by injecting source 
code into a Docker image and assembling a new 

Docker image which incorporates the builder image 
and built source.

The result is then ready to use with docker run.



Containers based on Software Collections

How source-to-image works

● builder container is run
● assembly script executed
● run script set as default CMD of resulting image
● container committed



Tip #12:
Let users use their favourite frameworks.



Containers based on Software Collections

Principles of source-to-image
1. assembly script

#> cat assembly

#!/bin/bash

cp -Rf /tmp/src/. ./

if [[ -f requirements.txt ]]; then
  pip install --user -r requirements.txt
fi

49



Containers based on Software Collections

Principles of source-to-image
2. run script

#> cat assembly

#!/bin/bash

function is_django_installed() {
  python -c "import django" &>/dev/null
}

manage_file=$(find . -maxdepth 2 -type f -name 'manage.py' | head -1)

if is_django_installed; then
  exec python "$manage_file" runserver 0.0.0.0:8080
fi

50



Tip #13:
Do not just install software.

Build micro-services.



Containers based on Software Collections

Microservices running on usual ports

#> cat Dockerfile

…
EXPOSE 8080
… 

#> docker run -d -p 8080:1234 guestbook

52



Tip #14:
Let users to run container as any UID.



Containers based on Software Collections

Allow to use any UID

#> cat Dockerfile

…
RUN chown -R 1001:0 /opt/app-root && chmod -R g+rw /opt/app-root
USER 1001
… 

#> docker run -ti -u 1483 python-27-centos7 bash

54



Containers based on Software Collections

Source-to-image in practice

$> s2i build https://github.com/joe/guestbook.git \
       --context-dir=app/ centos/python-34-centos7 guestbook

$> docker run -p 8080:8080 guestbook

55



Content matters.



Where to get some new bits?



Software Collections already deliver 
recent versions.



Software Collections already deliver 
recent versions.

And packages, like pip :)



Containers based on Software Collections

4. SOFTWARE COLLECTIONS IN 
CONTAINERS



Containers based on Software Collections

Software collections are available
and do not conflict with system packages

#> yum -y install rh-postgresql94
 ...
Installed:
  rh-postgresql94.x86_64 0:2.0-9.el7
Dependency Installed:
  rh-postgresql94-postgresql.x86_64 0:9.4.4-1.el7
  rh-postgresql94-postgresql-libs.x86_64 0:9.4.4-1.el7
  rh-postgresql94-postgresql-server.x86_64 0:9.4.4-1.el7
  rh-postgresql94-runtime.x86_64 0:2.0-9.el7
Complete!

61



Containers based on Software Collections

Example of running SCL
The whole magic is in changing environment variables

#> scl enable rh-python34 'python -V'
Python 3.4.3

62



Tip #15:
Do not be afraid to combine

containers & Software Collections.



Containers world is differentWhich container includes a collection?



Containers based on Software Collections

How SCL may be handy in container

65

● OS containers (in comparison to one-process containers)
○ what if we need two versions of something inside a container?

● same problems in container as outside
○ python 2.7 is needed for YUM



Containers based on Software Collections

How SCL may be handy in container

66

● one binary for both (develop once + test once)
○ saving resources
○ same content on traditional Linux and in containers
○ easy transition from traditional environment to containers



Containers based on Software Collections

5. APPLICATION CONTAINERS IN
RED HAT AND CENTOS PORTFOLIO



Containers based on Software Collections

Our focus in containerized world

68

● one solution across products (CentOS, RHEL, Atomic, OpenShift, …)
● make containers look same (PostgreSQL, MariaDB)
● support specific use cases (not too many, not too few)



Containers based on Software Collections

Images based on Software Collections
made available by SCLo SIG in CentOS

69

Databases Collections Red Hat’s registry docker.io

mariadb55

mongodb24 openshift/mongodb-24-rhel7 openshift/mongodb-24-centos7

mysql55 openshift/mysql-55-rhel7 openshift/mysql-55-centos7

postgresql92 openshift/postgresql-92-rhel7 openshift/postgresql-92-centos7

rh-mariadb100 rhscl/mariadb-100-rhel7 centos/mariadb-100-centos7

rh-mongodb26 rhscl/mongodb-26-rhel7 centos/mongodb-26-centos7

rh-mysql56 rhscl/mysql-55-rhel7 centos/mysql-56-centos7

rh-postgresql94 rhscl/postgresql-94-rhel7 centos/postgresql-94-centos7



Containers based on Software Collections

Images based on Software Collections
made available by SCLo SIG in CentOS

Language Collections (1/2) Red Hat’s registry docker.io

nodejs010 openshift/nodejs-010-rhel7 openshift/nodejs-010-centos7

perl516 openshift/perl-516-rhel7 openshift/perl-516-centos7

php54

php55 openshift/php-55-rhel7 openshift/php55-centos7

python27 rhscl/python-27-rhel7 centos/python-27-centos7

python33 openshift/python-33-rhel7 openshift/python-33-centos7

rh-perl520 rhscl/perl-520-rhel7 centos/perl-520-centos7

rh-php56 rhscl/php-56-rhel7 centos/php-56-centos7

70



Containers based on Software Collections

Images based on Software Collections
made available by SCLo SIG in CentOS

Language Collections (2/2) Red Hat’s registry docker.io

rh-python34 rhscl/python-34-rhel7 centos/python-34-centos7

rh-ror41 rhscl/ror-41-rhel7 centos/ror-41-centos7

rh-ruby22 rhscl/ruby-22-rhel7 centos/ruby-22-centos7

ror40

ruby193

ruby20 openshift/ruby-20-rhel7 openshift/ruby-200-centos7

rh-passenger40 rhscl/passenger-40-rhel7 centos/passenger-40-centos7

71



Containers based on Software Collections

Images based on Software Collections
made available by SCLo SIG in CentOS

Others Collections Red Hat’s registry docker.io

httpd24 rhscl/httpd-24-rhel7 centos/httpd-24-centos7

nginx14

nginx16 rhscl/nginx-16-rhel7 centos/nginx-16-centos7

devassistant09

git19

thermostat1

maven30, rh-java-common

devtoolset-4-toolchain rhel7/devtoolset-4-toolchain

72



Tip #16:
Use containers from reliable provider.



Tip #16:
Use containers from reliable provider.

like Red Hat or CentOS :)



Tip #17:
Make sure SCL is enabled in container.



Containers based on Software Collections

How to enable SCL in container

#> cat Dockerfile
…
ADD scl_enable /usr/share/container-scripts/
ENV BASH_ENV=/usr/share/container-scripts/scl_enable \
    ENV=/usr/share/container-scripts/scl_enable \
    PROMPT_COMMAND=". /usr/share/container-scripts/scl_enable"
ENTRYPOINT ["container-entrypoint"]
…

#> cat scl_enable
unset BASH_ENV PROMPT_COMMAND ENV
source scl_source enable rh-python34

76



Tip #18:
Do not use ENTRYPOINT for anything 

else than environment change.



Containers based on Software Collections

How to enable SCL in container

#> cat container-entrypoint

#!/bin/bash
set -eu
cmd="$1"; shift
exec $cmd "$@"

78



Tip #19:
Hide that we’re using SCL underneath.



“Running a container from Docker Hub is 
same as running curl … | sudo bash”

(unknown developer).



Containers based on Software Collections

Which one?

81



Tip #20:
Think about what the name promises.



Containers based on Software Collections

Containers naming questions

83

● include major version?
● include platform version underneath?
● examples:

○ rhscl/postgresql-94-rhel7 ?
○ centos/postgresql-94-centos7 ?
○ or is just centos/postgresql enough ?
○ or centos/postgresql-94 ?

https://github.com/projectatomic/ContainerApplicationGenericLabels/blob/master/vendor/redhat/names.md 

https://github.com/projectatomic/ContainerApplicationGenericLabels/blob/master/vendor/redhat/names.md
https://github.com/projectatomic/ContainerApplicationGenericLabels/blob/master/vendor/redhat/names.md


Tip #21:
Consider what is part of image’s API.



Containers based on Software Collections

Paths

85

● /usr rather than /usr/local
● hide the /opt (Software Collections specifics)
● expected paths for volumes /var/lib/..., configuration



Tip #22:
Set metadata to containers.



Containers based on Software Collections

OpenShift and Kubernetes labels

LABEL io.k8s.description="MySQL database server" \
      io.k8s.display-name="MySQL 5.6" \
      io.openshift.expose-services="3306:mysql" \
      io.openshift.tags="database,mysql,mysql56,rh-mysql56"

87



Tip #23:
Take security seriously.



Containers based on Software Collections

Security

89

“Containers do not contain”

● colouring book by Dan Walsh
https://github.com/mairin/selinux-coloring-book 

https://github.com/fedoradesign/coloringbook-containers/raw/master/Print-Ready/Pages.pdf 

https://github.com/mairin/selinux-coloring-book
https://github.com/mairin/selinux-coloring-book
https://github.com/fedoradesign/coloringbook-containers/raw/master/Print-Ready/Pages.pdf
https://github.com/fedoradesign/coloringbook-containers/raw/master/Print-Ready/Pages.pdf


Containers based on Software Collections



What is the thing that matters?



Containers world is differentWhat about some complex apps?



Containers based on Software Collections

6. DISTRIBUTION OF CONTAINER APPS



Containers based on Software Collections

Application development with containers
Because we want to develop applications, no packages.

● flexibility
● grouping
● isolation
● transparency



Containers based on Software Collections



Containers based on Software Collections



Containers based on Software Collections

How to distribute...

97

● “how to run” instructions (readme, bash script)
● orchestration specs (kubernetes)

#> curl http://some-random.web/run | bash



“Nulecule is a standard way of 
defining multi-container application’s 

configuration without need to 
distribute instructions to end-user”



“Nulecule is a standard way of 
defining multi-container application’s 

configuration without need to 
distribute instructions to end-user”



“Nulecule is a standard way of 
defining multi-container application’s 

configuration without need to 
distribute instructions to end-user”



“Nulecule is a standard way of 
defining multi-container application’s 

configuration without need to 
distribute instructions to end-user”



“Nulecule is a standard way of 
defining multi-container application’s 

configuration without need to 
distribute instructions to end-user”



“Nulecule is a standard way of 
defining multi-container application’s 

configuration without need to 
distribute instructions to end-user”



Tip #24:
Use Nulecule to deliver artefacts to run 

container applications.



Containers based on Software Collections

Nulecule concept

105

● description of the parameters is done by image author once
● Nulecule specification is distributed as container
● user provides only specific missing values
● plug-able providers architecture



Containers based on Software Collections

Nulecule specification for PostgreSQL
Basic info about application

id: postgresql-atomicapp
metadata:
  name: PostgreSQL Atomic App
  description: PostgreSQL database available as Atomic App
graph:
  - name: postgresql-atomicapp
    params:
      - name: db_user
        description: Database User
      - name: db_pass
        description: Database Password
      - name: db_name
        description: Database Name
    artifacts:
      docker:
        - file://artifacts/docker/postgresql-app-run

106



Containers based on Software Collections

Nulecule specification for PostgreSQL
Specification for docker parameters

id: postgresql-atomicapp
metadata:
  name: PostgreSQL Atomic App
  description: PostgreSQL database available as Atomic App
graph:
  - name: postgresql-atomicapp
    params:
      - name: db_user
        description: Database User
      - name: db_pass
        description: Database Password
      - name: db_name
        description: Database Name
    artifacts:
      docker:
        - file://artifacts/docker/postgresql-app-run

107



Containers based on Software Collections

Nulecule specification for PostgreSQL
Specification for docker provider

id: postgresql-atomicapp
metadata:
  name: PostgreSQL Atomic App
  description: PostgreSQL database available as Atomic App
graph:
  - name: postgresql-atomicapp
    params:
      - name: db_user
        description: Database User
      - name: db_pass
        description: Database Password
      - name: db_name
        description: Database Name
    artifacts:
      docker:
        - file://artifacts/docker/postgresql-app-run

108



Containers based on Software Collections

Nulecule specification for PostgreSQL
Building and running the image with Nulecule specification

#> cd postgresql-rhel7-atomicapp
#> docker build -t projectatomic/postgresql-rhel7-atomicapp:latest .

109

#> atomic run projectatomic/postgresql-rhel7-atomicapp



Containers based on Software Collections

Complete schema of Nuleculized app

110



Thanks.
Software Collections home: https://www.softwarecollections.org/en/docs/guide/
Nulecule home: https://github.com/projectatomic/nulecule
Sources of Docker images: https://github.com/sclorg/rhscl-dockerfiles
Example of Nulecule app: https://github.com/hhorak/guestbook-pgsql
Mailing list about Software Collections: <sclorg@redhat.com>

Honza Horak <hhorak@redhat.com>
@HonzaHorak

https://www.softwarecollections.org/en/docs/guide/
https://github.com/projectatomic/nulecule
https://github.com/sclorg/rhscl-dockerfiles
https://github.com/hhorak/guestbook-pgsql


Container is not a virtual machine.
Focus on common use cases.
Support source-to-image tool.
Use Nulecule for distribution.



Do not forget,
content does matter.

Honza Horak <hhorak@redhat.com>
@HonzaHorak

https://hhorak.fedorapeople.org/2016/160128_Path_from_Software_Collections_to_Containers_for_OpenShift.pdf


